domingo, 27 de junio de 2010

metales como catalizadores

El catalizador tiene como misión disminuir los elementos
polucionantes contenidos en los gases de escape de un
vehículo mediante la técnica de la catálisis. Se trata de un
dispositivo instalado en el tubo de escape, cerca del motor,
ya que ahí los gases mantienen una temperatura elevada.
Esta energía calorífica pasa al catalizador y eleva su propia
temperatura, circunstancia indispensable para que este dispositivo
tenga un óptimo rendimiento, que se alcanza entre
los 400 y 700 grados centígrados.

Exteriormente el catalizador es un recipiente de acero inoxidable,
frecuentemente provisto de una carcasa-pantalla
metálica antitérmica, igualmente inoxidable, que protege
los bajos del vehículo de las altas temperaturas alcanzadas.
En su interior contiene un soporte cerámico o monolito, de
forma oval o cilíndrica, con una estructura de múltiples celdillas
en forma de panal, con una densidad de éstas de
aproximadamente 450 celdillas por cada pulgada cuadrada
(unas 70 por centímetro cuadrado). Su superficie se
encuentra impregnada con una resina que contiene elementos
nobles metálicos, tales como Platino (Pt) y Paladio
(Pd), que permiten la función de oxidación, y Rodio (Rh), que
interviene en la reducción. Estos metales preciosos actúan
como elementos activos catalizadores; es decir, inician y
aceleran las reacciones químicas entre otras sustancias con
las cuales entran en contacto, sin participar ellos mismos en
estas reacciones. Los gases de escape contaminantes generados
por el motor, al entrar en contacto con la superficie
activa del catalizador son transformados parcialmente en
elementos inócuos no polucionantes.

Maria Linarez
secc1 ees

El reciclaje de los metales

El uso por el hombre de la mayoría de metales no los destruye, aunque en el proceso sí se reduciría en una pequeña cantidad. Los metales transformados en productos comerciales se hallan concentrados de tal forma en áreas urbanas, que excederían a la concentración que originalmente tenían en la tierra.

Por eso, las ciudades se pueden considerar como auténticas menas o depósitos minerales. Actualmente es más económico abrir nuevas minas que reciclar los metales usados y desechados (con alguna excepción, como el aluminio). Pero probablemente, en un futuro, muchos metales considerados ahora extinguibles, cambiarán su condición de no renovables a reciclables.

No se pueden reciclar todos los minerales en cualquier condición. La concentración de fosfatos que se usan en fertilizantes y detergentes, por ejemplo, se dispersan extensivamente a través de las aguas y tierras agrícolas, entran en los ciclos biológicos de variados organismos, y llegan a alcanzar los océanos. Porque estos fosfatos son casi irrecuperables, y porque la cadencia de uso excede probablemente la cadencia de formación de nuevas reservas, se consideran recursos extinguibles y por tanto no renovables.

Maria Linarez 19881179

secc1 ees

metales como contaminantes

Contaminantes como los metales pesados tienen la capacidad de provocar cambios evolutivos debido a sus efectos dañinos en plantas. Ejemplos de metales pesados son el cobre (Cu), plomo (Pb), zinc (Zn),mercurio (Hg), arsénico (As), etc.

Los metales pesados son potencialmente contaminantes devastadores ya que contaminan el aire, el agua y la tierra utilizados por las plantas y los demás eslabones de las cadenas tróficas. Sus efectos en las plantas incluyen: necrosis en las puntas de las hojas e inhibición del crecimiento de las raíces, junto con muchas fatalidades en muchas especias de plantas incapaces de tolerar estos metales.

Los sustratos contaminados suelen ser producto del trabajo minero, polución, industria de fundición y chapado, deposito de origen atmosférico de incineradores y tubos de escape de vehículos, uso de fertilizantes y pesticidas, y el deposito de lodos y barros residuales.

Estos metales no son sólo dañinos para las plantas, sino que se filtran en el sistema de aguas y se
introducen en la cadena trófica. En concentraciones pequeñas no suelen tener efectos, pero a medida que se va ascendiendo en la cadena la concentración se va volviendo cada vez mayor.

Una tragedia muy conocida es la de la bahía de Minamata, en Japón. Una fábrica de plásticos comenzó a descargar deshechos en la bahía en 1951. En 1953 un millar de personas en Minamata estaban seriamente enfermas. Algunas estaban discapacitadas, otras paralizadas, otras se volvieron ciegas, algunas mentalmente inestables, y otras murieron. La causa de la enfermedad eran los compuestos de mercurio que la fábrica de plásticos echaba en la bahía. Aunque el nivel de mercurio en el agua no era elevado, el mercurio se concentraba en la cadena trófica. El nivel de mercurio en los peces era elevado, y los pescadores y sus familias se contaminaron mediante la consumición de pescado.

Otros países han experimentado los resultados de la contaminación por el mercurio. En 1967, muchos ríos y lagos de Suecia estaban tan contaminados por el mercurio que se prohibió la pesca en ellos.
Lentamente es convertido por bacterias en compuestos solubles de mercurio. Estos pueden introducirse en las cadenas tróficas. El problema es que los metales no pueden ser degradados químicamente.
Plantas que toleran o utilizan metales pesados
La mayoría de las plantas capaces de crecer en tierras ricas en metales lo hacen excluyendo iones
potencialmente tóxicos de sus sistemas de raíces. En otras plantas, los metales son utilizados como micro nutrientes, aunque a menudo aún concentraciones mínimas saturan a la planta. La habilidad de tolerarla presencia de metales pesados está determinada por el nivel de variación genética del individuo.

Maria Linarez 19881179
secc1 ees

Actínidos

Los elementos actínidos constituyen un grupo de quince elementos consecutivos en la tabla periódica, estos elementos se encuentran encabezados por el elemento actinio, de símbolo Ac, y numero atómico 89, hasta el laurencio de símbolo Lw, y numero atómico 103. Como grupo son significativamente importantes debido a la radioactividad. A pesar que muchos elementos se los pueden encontrar en la naturaleza, la mayoría de los de este grupo, han sido obtenidos artificialmente por el hombre. Entre los elementos mas importantes nombramos al uranio y el plutonio que han sido utilizados en la bomba atómica y que actualmente son usados cada vez con mayor frecuencia con el fin de obtener energía eléctrica.

Propiedades generales del grupo

Las propiedades de estos elementos son similares entre si, debido a que poseen una disposición de los electrones alrededor del núcleo, que les confiere dicha similitud. En cualquier átomo, el numero de cargas positivas del núcleo es igual al numero de cargas negativas (electrones) que lo rodean, determinándose así la neutralidad eléctrica del átomo. Estos elementos se encuentran ubicados en la tabla periódica uno a continuación del otro a medida que aumenta el numero de protones. Esto significa que el elemento que sucede a otro, debe tener a demás un electrón mas para balancear la carga positiva del protón adicional y así mantener el átomo eléctricamente neutro.

Usos generales

La mayor significación practica de estos elementos radica en la fisionalidad, o potencial de ruptura de ciertos isótopos. Cuando un núcleo atómico se rompe, o sufre fisión, una enorme cantidad de energía se libera. Esta energía puede ser utilizada para generar una explosión atómica, o puede ser controlada y luego utilizada con el fin de generar energía eléctrica. Los procesos nucleares para producción de energía no emiten humo, smog o gases nocivos, a diferencia de las calderas convencionales y las plantas de combustible. Las plantas de energía nuclear, sin embargo, producen desechos calientes que se pueden considerar como polucionadores térmicos y peligrosos desechos radiactivos los cuales son polucionantes, pero pueden ser menos indeseables que los generadores de combustible fósil. Por esta y otras razones como la economía de operación y la enorme cantidad de energía eléctrica producida inherentemente en la generación de la tecnología de la energía atómica, y, ya que los actínidos son los únicos materiales fisionables conocidos, el impacto practico de su disposición es grandioso.

Maria Linarez 19881179
secc1 ees

Metales contra el Cancer

En la dramática lucha que la medicina libra contra el cáncer los metales de transición se han revelado como unos valiosos aliados. Ya a finales de la década de los sesenta se observaron las propiedades que el cis-diamino dicloroplatino(II) conocido como “cisplatino”, presentaba para inhibir el crecimiento celular anómalo de las células. Según las investigaciones llevadas a cabo, el platino se enlaza con uno de los átomos de nitrógeno de la guanina (una de las bases nitrogenadas del ADN) provocando una torsión anómala de la hélice del ADN que impide su replicación. El inconveniente del cisplatino está en sus efectos secundarios , su inactividad frente a determinados tumores y la posibilidad de que las células cancerosas desarrollen resistencia.

Una segunda generación de fármacos, basados en el trans-platino, evitan parte de estos inconvenientes. Además, la adecuada selección de los ligandos (heterociclos, aminas alifáticas… etc) puede hacerlos altamente selectivos hacia los distintos tumores.

Los complejos de Ga (III) también han mostrado su efectividad debido a las analogías entre el ión Ga (III) y el ión Fe (III) que permiten que el primero intervenga interfiriendo el metabolismo celular del hierro.

Los compuestos de Sn (IV) también han mostrado su eficacia para unirse a los grupos fosfato del ADN provocando la apoptosis (”suicidio” o mecanismo de muerte natural de las células cuando se detecta alguna disfunción grave en las mismas). Presentan la ventaja de una menor toxicidad y menores efectos secundarios, en especial la ausencia de vómitos.

Aunque se ha mostrado que los complejos de prácticamente todos los metales de transición pueden tener propiedades antitumorales (Pd, Cu, Fe, Mo, Au, Rh, Zr…) los que más se han estudiado son los de titanio (IV) y rutenio (II/III). Este último metal presenta una característica muy curiosa, y es la posibilidad de sintetizar macromoléculas que sirven como cápsulas que esconden en su interior medicamentos activos contra las células cancerosas. Verdaderos caballos de Troya que permiten atacar desde dentro con eficacia redoblada.

Maria Linarez 19881179

secc1 ees


Lantánidos

La serie de lantánidos es el grupo de elementos químicos que siguen al lantano en el grupo IIIB de la tabla periódica. Su distinción atómica es que ocupan en subnivel electrónico 4f. En un principio, sólo estos elementos con números atómicos 58 a 71 son lantánidos.

Los elementos del grupo IIIB, incluyendo al escandio (Sc 21) y al Itrio (Y 39), son también conocidos como tierras raras, porque fueron originalmente descubiertas juntas en minerales raros e insolados como óxidos, o "tierras". En comparación con muchos otros elementos, las tierras raras no son realmente "raras", a excepción del prometio, que sólo tiene isótopos radioactivos.

Los lantánidos se encuentran en muchos minerales, principalmente en la MONAZITA. En rocas ígneas sobre la superficie de la tierra, el cerio es el elemento más abundante de ellos. Los lantánidos puros son metales plateados con altos puntos de ebullición. Reaccionan lentamente con el aire, excepto el Samario, el Europio, y el Iterbio, que son mucho mas reactivos con el oxígeno. Los metales son preparados de floruros u óxidos por un tratamiento con un fuerte reductor de metales, como el Calcio, o de sales cloruras y floruras por electrólisis a altas temperaturas. Los lantánidos son típicamente insolados en grupo precipitando sus hidróxidos insolubles, oxalatos o fosfatos. Luego, ellos son separados por un intercambio de iones -CROMATOGRAFÍA.

En un tiempo, el único uso comercial de las tierras raras era como mezcla de metal, uno de ellos consistía principalmente de cerio, lantano, y neodimio. Este es pirofosfórico (atrapan fuego en aire) cuando finalmente se dividió y es usado para hacer encendedores. La producción comercial de estas tierras raras hoy está creciendo. Ellos son usadas en metalurgia (para remover el azufre y el oxígeno) y para ser fuertes magnetos permanentes como es el SmCo (s). Otros usos son como fósforos en las pantallas de televisión; como catalizadores que descomponen los aires autocontaminantes.

Maria Linarez 19881179

secc1 ees

Metalurgia


Es la ciencia y técnica de la obtención y tratamiento de los metales desde minerales metálicos, hasta los no metálicos. También estudia la producción de aleaciones, el control de calidad de los procesos vinculados así como su control contra la corrosión. Además de relacionarse con la industria metalúrgica.



Procesos Metalurgicos

Los procesos metalúrgicos comprenden las siguientes fases:

  • Obtención del metal a partir del mineral que lo contiene en estado natural, separándolo de la ganga
  • El afino, enriquecimiento o purificación: eliminación de las impurezas que quedan en el metal.
  • Elaboración de aleaciones.
  • Otros tratamientos del metal para facilitar su uso.

Operaciones básicas de obtención de metales:

Maria linarez 19881179
secc1 ees

Aleación

Es una mezcla sólida homogénea de dos o más metales, o de uno o más metales con algunos elementos no metálicos. Se puede observar que las aleaciones están constituidas por elementos metálicos en estado elemental (estado de oxidación nulo), por ejemplo Fe, Al, Cu, Pb. Pueden contener algunos elementos no metálicos por ejemplo P, C, Si, S, As. Para su fabricación en general se mezclan los elementos llevándolos a temperaturas tales que sus componentes se fundan.

Las aleaciones presentan brillo metálico y alta conductividad eléctrica y térmica, aunque usualmente menor que los metales puros. Las propiedades físicas y químicas son, en general, similares a la de los metales, sin embargo las propiedades mecánicas tales como dureza, ductilidad, tenacidad etc. pueden ser muy diferentes, de ahí el interés que despiertan estos materiales, que pueden tener los componentes de forma aislada.

Las aleaciones no tienen una temperatura de fusión única, dependiendo de la concentración, cada metal puro funde a una temperatura, coexistiendo simultáneamente la fase líquida y fase sólida como se puede apreciar en los diagramas de fase. Hay ciertas concentraciones específicas de cada aleación para las cuales la temperatura de fusión se unifica. Esa concentración y la aleación obtenida reciben el nombre de eutéctica, y presenta un punto de fusión más bajo que los puntos de fusión de los componentes.

Maria Linarez 19881179

secc1 ees


Nanopartículas para identificar, localizar y eliminar cáncer

Otra arma en el arsenal contra el cáncer: nanopartículas que identifican,localizan y eliminan células cancerosas específicas, sin tocar las células sanas.

los investigadores sintetizaron las nanopartículas de oro entre dos piezas de óxido de hierro. A continuación, adjuntaron a las partículas unos anticuerpos que apuntan a una molécula que se encuentra sólo en las células del cáncer colorrectal. Una vez enlazadas, las nanopartículas son absorbidas por las células cancerosas.

Para eliminar las células, los investigadores utilizan un láser de infrarrojo cercano, una longitud de onda que en los niveles utilizados no daña el tejido normal. La radiación, en cambio, sí es absorbida por el oro de las nanopartículas. Esto hace que las células cancerosas se calienten y mueran.

El objetivo, según el autor principal y el estudiante de posgrado en biomedicina Dickson Kirui, es mejorar la tecnología y hacer que sea apropiada para probarla en un ensayo clínico con humanos. Los investigadores están trabajando ahora en un experimento similar que ataca a las células del cáncer de próstata.

El oro tiene potencial como material clave para combatir el cáncer en futuras terapias inteligentes. Es biocompatible, inerte y relativamente fácil de modificar químicamente. Cambiando el tamaño y la forma de las partículas de oro, pueden ajustarlas para responder a diferentes longitudes de onda de energía.

Una vez alcanzadas por las partículas de oro las células cancerosas son destruidas por medio de calor (apenas unos pocos de grados por encima de la temperatura corporal normal) mientras que el tejido circundante permanece ileso. Un láser de tan baja potencia no tiene ningún efecto sobre las células colindantes debido a que esa longitud de onda en particular, no calienta las células si no están cargadas con nanopartículas, explicaron los investigadores.

El uso de óxido de hierro en las otras partes de las partículas podría, algún día, permitir a los científicos realizar también un seguimiento del progreso de los tratamientos del cáncer utilizando imágenes de resonancia magnética aprovechando las propiedades magnéticas de las partículas.

Maria Linarez 19881179
secc1 ees

Ventajas de nanopartículas de plata

Se describe cómo las nanopartículas formadas por un número muy pequeño de átomos de plata pueden protegernos del daño celular causado por el etanol.

Los investigadores aplicaron las nanopartículas de plata a astrocitos expuestos al etanol. Estos tipos de células acompañan a las neuronas y está muy extendido su uso como modelos para estudiar los mecanismos fisiopatológicos del alcohol en el síndrome de alcoholismo fetal, una enfermedad que se desarrolla en algunos bebés antes de nacer, cuando la madre consume unos niveles excesivos de alcohol, y que conduce a una serie de graves trastornos neurológicos.

El alcohol tiene efectos especialmente nocivos en las células nerviosas y, en el caso específico de los astrocitos, induce la muerte celular programada y una alteración del citoesqueleto de actina. Tras la aplicación de las nanopartículas de plata a las células expuestas al etanol, el citoesqueleto de actina muestra una marcada mejora y no se produce la muerte celular.

El estudio combina el análisis de las propiedades electrocatalíticas de las nanopartículas de plata con el examen de sus potenciales aplicaciones biológicas. Los autores también han descubierto que las nanopartículas previenen las alteraciones inducidas por otros alcoholes primarios, como el metanol y el butanol, pero no las inducidas por otras sustancias tóxicas como el peróxido de hidrógeno.

Maria Linarez 19881179
secc1 ees

Comutacion de Circuitos y Paquetes

Conmutación de circuitos (circuit switching)


La conmutación de circuitos es un tipo de comunicación que establece o crea un canal dedicado (o circuito) durante la duración de una sesión. Después de que es terminada la sesión (e.g. una llamada telefónica) se libera el canal y éste podrá ser usado por otro par de usuarios.

El ejemplo más típico de este tipo de redes es el sistema telefónico la cual enlaza segmentos de cable para crear un circuito o trayectoria única durante la duración de una llamada o sesión. Los sistemas de conmutación de circutos son ideales para comunicaciones que requieren que los datos/infiormación sean transmitidos en tiempo real.


Existen dos vertientes en la conmutación de paquetes:
» FDM
» TDM

Conmutación de paquetes (packet switching)


En los sistemas basados en conmutación de paquetes, la información/datos a ser transmitida previamente es ensamblada en paquetes. Cada paquete es entonces transmitido individualmente y éste puede seguir diferentes rutas hacia su destino. Una vez que los paquetes llegan a su destino, los paquetes son otra vez re-ensamblados.

Mientras que la conmutación de circuitos asigna un canal único para cada sesión, en los sistemas de conmutación de paquetes el canal es compartido por muchos usuarios simúltaneamente. La mayoría de los protocolos de WAN tales como TCP/IP, X.25, Frame Relay, ATM, son basados en conmutación de paquetes.

La conmutación de paquetes es más eficiente y robusto para datos que pueden ser enviados con retardo en la transmisión (no en tiempo real), tales como el correo electrónico, paginas web, archivos, etc.

En el caso de aplicaciones como voz, video o audio la conmutación de paquetes no es muy recomendable a menos que se garantize un ancho de banda adecuado para enviar la información. Pero el canal que se establece no garantiza esto, debido a que puede existir tráfico y nodos caídos durante el recorrido de los paquetes. Estos son factores que ocasionen que los paquetes tomen rutas distintas para llegar a su destino. Por eso se dice que la ruta que toman los paquetes es "probabilística", mientras que en la conmutación de circuitos, esta ruta es "determinística".

Maria Linarez 19881179

Secc1 CAF

Guías de ondas y líneas de transmisión

En las comunicaciones, las líneas de transmisión llevan señales telefónicas, datos de computadoras en LAN, señales de televisión en sistemas de Televisión por cable y señales de un transmisor a una antena o de una antena a un receptor. Las líneas de transmisión son enlaces importantes en cualquier sistema. Son más que tramos de alambre o cable. Sus características eléctricas son sobresalientes, y se deben igualar a las del equipo para obtener comunicaciones adecuadas.

Las líneas de transmisión también son circuitos. En frecuencias muy altas donde las longitudes de onda son cortas, las líneas de transmisión actúan como circuitos resonantes y aun como componentes reactivos en VHF y UHF, y frecuencias de microondas, la mayor parte de los circuitos sintonizados y filtros se utilizan con líneas de transmisión.

Una guía de ondas es un dispositivo que se usa para transportar energía electromagnética y/o información de un sitio a otro. Generalmente se usa el término línea de transmisión a la guía de ondas usada en el extremo de menor frecuencia del espectro. A estas frecuencias es posible utilizar un análisis cuasiestático. Para frecuencias más elevadas la aproximación cuasiestática deja de ser válida y se requiere un análisis en términos de campos, que es de mayor complejidad.

Maria Linarez 19881179
secc1 Caf

Red Neuronal (Neural, Neural Networks)

Es un sistema compuesto por un gran número de elementos básicos, agrupados en capas y que se encuentran altamente interconectados. Esta estructura posee varias entradas y salidas, las cuales serán entrenadas para reaccionar ( valores O), de una manera deseada, a los estímulos de entrada (valores I).

Estos sistemas emulan, de una cierta manera, al cerebro humano. Requieren aprender a comportarse y alguien debe encargarse de enseñarles o entrenarles, en base a un conocimiento previo del entorno del problema.

Las redes neuronales no son más que un modelo artificial y simplificado del cerebro humano, que es el ejemplo más perfecto del que disponemos para un sistema que es capaz de adquirir conocimiento a través de la experiencia. Una red neuronal es "un nuevo sistema para el tratamiento de la información.

Por lo tanto, las Redes Neuronales:

Consisten de unidades de procesamiento que intercambian datos o información. Se utilizan para reconocer patrones, incluyendo imágenes, manuscritos y secuencias de tiempo, tendencias financieras.Tienen capacidad de aprender y mejorar su funcionamiento.

Esta tecnología es muy útil, estas aplicaciones son aquellas en las cuales se dispone de un registro de datos y nadie sabe la estructura y los parámetros que pudieran modelar el problema. En otras palabras, grandes cantidades de datos y mucha incertidumbre en cuanto a la manera de como estos son producidos.

Como ejemplos de las aplicaciones de las redes neuronales (Neural Networks) se pueden citar: las variaciones en la bolsa de valores, los riesgos en préstamos, el clima local, el reconocimiento de patrones (rostros) y la minería de datos (data mining).


Maria Linarez 19881179

secc1 CAF

InterRedes

Representa vincular redes como si se vincularán estaciones.Este concepto y las ideas que de este surgen, hace brotar un nuevo tipo especial de dispositivo que es un vinculador para interconectar redes entre sí (la tecnología de Internet está basada en el concepto de InterRedes), el dispositivo en cuestión se denomina "dispositivo de interconexión". Es decir, lo que se conecta, son redes locales de trabajo.

Un enlace central es utilizado a menudo en los entornos locales, como un edificio. Los servicios públicos como las empresas de telefonía, proporcionan enlaces de área metropolitana o de gran alcance.

Las tres topologías utilizadas para estos tipos de redes son:

Red de Enlace Central
Se encuentra generalmente en los entornos de oficina o campos, en los que las redes de los pisos de un edificio se interconectan sobre cables centrales. Los Bridges y los Routers gestionan el tráfico entre segmentos de red conectados.

Red de Malla
Esta involucra o se efectúa a través de redes WAN, una red malla contiene múltiples caminos, si un camino falla o está congestionado el tráfico, un paquete puede utilizar un camino diferente hacia el destino. Los routers se utilizan para interconectar las redes separadas.



Red de Estrella Jerárquica

Esta estructura de cableado se utiliza en la mayor parte de las redes locales actuales, por medio de concentradores dispuestos en cascada para formar una red jerárquica.

Maria Linarez 19881179
secc1 Caf

Tipos de Redes

LAN: Local Area Network, Red de Area Local

Una LAN conecta varios dispositivos de red en una area de corta distancia (decenas de metros) delimitadas únicamente por la distancia de propagación del medio de transmisión [coaxial (hasta 500 metros), par trenzado (hasta 90 metros) o fibra óptica [decenas de metros], espectro disperso o infrarrojo [decenas de metros]).

Una LAN podria estar delimitada también por el espacio en un edificio, un salón, una oficina, hogar…pero a su vez podría haber varias LANs en estos mismo espacios. En redes basadas en IP, se puede concebir una LAN como una subred, pero esto no es necesariamente cierto en la práctica.

Las LAN comúnmente utilizan las tecnologías Ethernet, Token Ring, FDDI (Fiber Distributed Data Interface) para conectividad, así como otros protocolos tales como Appletalk, Banyan Vines, DECnet, IPX, etc.

CAN: Campus Area Network, Red de Area Campus

Una CAN es una colección de LANs dispersadas geográficamente dentro de un campus (universitario, oficinas de gobierno, maquilas o industrias) pertenecientes a una misma entidad en una área delimitada en kilometros.

Una CAN utiliza comúnmente tecnologías tales como FDDI y Gigabit Ethernet para conectividad a través de medios de comunicación tales como fibra óptica y espectro disperso.


MAN: Metropolitan Area Network, Red de Area Metropolitana

Una MAN es una colección de LANs o CANs dispersas en una ciudad (decenas de kilometros). Una MAN utiliza tecnologías tales como ATM, Frame Relay, xDSL (Digital Subscriber Line), WDM (Wavelenght Division Modulation), ISDN, E1/T1, PPP, etc. para conectividad a través de medios de comunicación tales como cobre, fibra óptica, y microondas.


WAN: Wide Area Network, Red de Area Local

Una WAN es una colección de LANs dispersadas geográficamente cientos de kilometros una de otra. Un dispositivo de red llamado enrutador es capaz de conectar LANs a una WAN.

Las WAN utilizan comúnmente tecnologías ATM (Asynchronous Transfer Mode), Frame Relay, X.25, E1/T1, GSM, TDMA, CDMA, xDSL, PPP, etc. para conectividad a tráves de medios de comunicación tales como fibra óptica, microondas, celular y vía satélite.


WLAN y WPAN

También existen las redes inalámbricas WLAN y WPAN, las primeras (wireless Local Area Network) estan delimitadas por la distancia de propagación del medio y de la tecnología empleada, en interiores hasta 100 metros y en exteriores varios kilómetros.

Las WLAN utilizan tecnologías tales como IEEE 802.11a, 802.11b, 802.15, HiperLAN2, HomeRF, etc. para conectividad a través de espectro disperso (2.4 GHz, 5 GHz).

Las WPANs (Wireless Personal Area Network) están delimitadas en distancia aún más que las WLANs, desde los 30 metros hasta los 100 metros bajo condiciones óptimas en interiores.

Las WPAN utilizan tecnologías tales como IEEE 802.15, Bluetooth, HomeRF, 802.11b para conectividad a través de espectro disperso o con infrarrojo.



Maria Linarez 19881179
secc1 Caf

Mecanismos para la resolución de conflictos en la transmisión de datos



CSMA/CD

Son redes con escucha de colisiones. Todas las estaciones son consideradas igual, es por ello que compiten por el uso del canal, cada vez que una de ellas desea transmitir debe escuchar el canal, si alguien está transmitiendo espera a que termine, caso contrario transmite y se queda escuchando posibles colisiones, en este último espera un intervalo de tiempo y reintenta de nuevo.

Token Bus

Se usa un token (una trama de datos) que pasa de estación en estación en forma cíclica, es decir forma un anillo lógico. Cuando una estación tiene el token, tiene el derecho exclusivo del bus para transmitir o recibir datos por un tiempo determinado y luego pasa el token a otra estación, previamente designada. Las otras estaciones no pueden transmitir sin el token, sólo pueden escuchar y esperar su turno. Esto soluciona el problema de colisiones que tiene el mecanismo anterior.

Token Ring

La estación se conecta al anillo por una unidad de interfaz (RIU), cada RIU es responsable de controlar el paso de los datos por ella, así como de regenerar la transmisión y pasarla a la estación siguiente. Si la dirección de la cabecera de una determinada transmisión indica que los datos son para una estación en concreto, la unidad de interfaz los copia y pasa la información a la estación de trabajo conectada a la misma.

Se usa en redes de área local con o sin prioridad, el token pasa de estación en estación en forma cíclica, inicialmente en estado desocupado. Cada estación cundo tiene el token (en este momento la estación controla el anillo), si quiere transmitir cambia su estado a ocupado, agregando los datos atrás y lo pone en la red, caso contrario pasa el token a la estación siguiente. Cuando el token pasa de nuevo por la estación que transmitió, saca los datos, lo pone en desocupado y lo regresa a la red.



Maria Linarez
secc1 Caf

Dispositivos de red

Router

Dispositivo de hardware para interconexión de redes de las computadoras que opera en la capa tres (nivel de red)
Switch

Un switch (en castellano “conmutador”) es un dispositivo electrónico de interconexión de redes de ordenadores que opera en la capa 2 (nivel de enlace de datos) del modelo OSI (Open Systems Interconnection). Un conmutador interconecta dos o más segmentos de red, funcionando de manera similar a los puentes (bridges), pasando datos de un segmento a otro, de acuerdo con la dirección MAC de destino de los datagramas en la red.

Los conmutadores se utilizan cuando se desea conectar múltiples redes, fusionándolas en una sola. Al igual que los puentes, dado que funcionan como un filtro en la red, mejoran el rendimiento y la seguridad de las LANs (Local Area Network- Red de Área Local).

Modem

Un módem es un equipo que sirve para modular y demodular (en amplitud, frecuencia, fase u otro sistema) una señal llamada portadora mediante otra señal de entrada llamada moduladora. Se han usado modems desde los años 60 o antes del siglo XX, principalmente debido a que la transmisión directa de la señales electrónicas inteligibles, a largas distancias, no es eficiente. Por ejemplo, para transmitir señales de audio por el aire, se requerirían antenas de gran tamaño (del orden de cientos de metros) para su correcta recepción.


Servidor


Realiza algunas tareas en beneficio de otras aplicaciones llamadas clientes. Algunos servicios habituales son los servicios de archivos, que permiten a los usuarios almacenar y acceder a los archivos de una computadora y los servicios de aplicaciones, que realizan tareas en beneficio directo del usuario final. Este es el significado original del término. Es posible que un ordenador cumpla simultáneamente las funciones de cliente y de servidor.

Un cortafuegos o firewall

Es un elemento de hardware o software utilizado en una red de computadoras para controlar las comunicaciones, permitiéndolas o prohibiéndolas según las políticas de red que haya definido la organización responsable de la red.



Hub

Es un equipo de redes que permite conectar entre sí otros equipos y retransmite los paquetes que recibe desde cualquiera de ellos a todos los demás. Los hubs han dejado de ser utilizados, debido al gran nivel de colisiones y tráfico de red que propician.
Maria linarez
secc1 Caf

Topologias Hibridas



El bus lineal, la estrella y el anillo se combinan algunas veces para formar combinaciones de redes híbridas
Anillo en estrella
Esta topología se utiliza con el fin de facilitar la administración de la red. Físicamente, la red es una estrella centralizada en un concentrador, mientras que a nivel lógico, la red es un anillo.
"Bus" en estrella
El fin es igual a la topología anterior. En este caso la red es un "bus" que se cablea físicamente como una estrella por medio de concentradores.
Estrella jerárquica
Esta estructura de cableado se utiliza en la mayor parte de las redes locales actuales, por medio de concentradores dispuestos en cascada par formar una red jerárquica.

Maria linarez
secc1 Caf

tipos de topologia


Anillo
Las estaciones están unidas unas con otras formando un círculo por medio de un cable común . El último nodo de la cadena se conecta al primero cerrando el anillo. Las señales circulan en un solo sentido alrededor del círculo, regenerándose en cada nodo. Con esta metodología, cada nodo examina la información que es enviada a través del anillo. Si la información no está dirigida al nodo que la examina, la pasa al siguiente en el anillo. La desventaja del anillo es que si se rompe una conexión, se cae la red completa.

Estrella

La red se une en un único punto, normalmente con un panel de control centralizado, como un concentrador de cableado (Figura 2). Los bloques de información son dirigidos a través del panel de control central hacia sus destinos. Este esquema tiene una ventaja al tener un panel de control que monitorea el tráfico y evita las colisiones y una conexión interrumpida no afecta al resto de la red.

Bus

Las estaciones están conectadas por un único segmento de cable (Figura 3). A diferencia del anillo, el bus es pasivo, no se produce regeneración de las señales en cada nodo. Los nodos en una red de "bus" transmiten la información y esperan que ésta no vaya a chocar con otra información transmitida por otro de los nodos. Si esto ocurre, cada nodo espera una pequeña cantidad de tiempo al azar, después intenta retransmitir la información.


Maria Linarez 19881179
secc1 Caf

La topología de red


La topología de red es la disposición física en la que se conectan los nodos de una red de ordenadores o servidores. Estos computadores pueden conectarse de muchas y muy variadas maneras. La conexión más simple es un enlace unidireccional entre dos nodos. Se puede añadir un enlace de retorno para la comunicación en ambos sentidos. Los cables de comunicación modernos normalmente incluyen más de un cable para facilitar esto, aunque redes muy simples basadas en buses tienen comunicación bidireccional en un solo cable.

La topología de red la determina únicamente la configuración de las conexiones entre nodos. La distancia entre los nodos, las interconexiones físicas, las tasas de transmisión y/o los tipos de señales no pertenecen a la topología de la red, aunque pueden verse afectados por la misma.

Maria Linarez 19881179
secc1 Caf